
ME-7933 Fundamentals of Robot Mobility Project-2 Report

Name: Harish Kuppam

Net ID: vvk243 NYU ID: N19024713

Project Introduction:

Here we are working on a Micro Air Vechicle, which has a camera and an IMU sensor mounted on it

and the MAV is driven in a known environment where all the required states can be measured using

a Vicon sensor. The whole project is composed of two different parts where in the first part we esti-

mate the pose of MAV using a mat of April Tags present on the ground. In the later part we estimate

the linear and angular velocity of the MAV. All the work here is done using techniques of Computer Vision.

Pose Estimation (Part-1):

Here we estimate the pose of the UAV at all the times using the image data provided by the camera feed.

A mat containing a matrix of 108 April Tags in (9 × 12) manner is laid on the ground and the MAV is

driven such that the on board camera captures a few tags all the time. Now the top left corner of top left

tag is considered as (0, 0) point in the world frame. The dimensions of tags are defined as shown in the

image below,

Each tag is a 0.152m square with 0.152m between tags with the exception of the space between columns 3

and 4, and 6 and 7, which is 0.178m. Using this information we create a function named getCorner, which

takes the ID of the tag as input and returns the co-ordinates of all the points each tag in the world-frame

as output. The remainder of ID when divided by 12 is taken as x and the integer part of ID when divided

by 12 is taken as y. Now going right in the mat the y-coordinate of top left corner is calculated and by

going down the x-coordinate is calculated by going down in the mat by making appropriate calculations.

Since we know relationship between each corner we can measure the coordinates of all the points in the

tag.

The next step is to use the known equation of projective transformation to calculate the transformation

from the image frame to world frame. The equation is,

λi


x

′
i

y
′
i

1

 =


h11 h12 h13

h21 h22 h23

h31 h32 h33

 ∗

xi

yi

1

 (1)

1



The above equation is then converted to a following more suitable form,[
xi yi 1 0 0 0 −x′

ixi −x
′
iyi −x

′
i

0 0 0 xi yi 1 −y′
ixi −y

′
iyi −y

′
i

]
2×9

h9×1 = 0 =⇒ Ah = 0 (2)

h is a (9× 1) matrix but since all the calculations are made to scale it has only 8 degrees of freedom. We

can see that each point contributes 2 rows so we need at-least four points to calculate h. In our case at

each instant we have multiple tags detected. So we stack up all the rows obtained from all the points from

all the detected tags and form an A matrix. Now, we perform SVD and estimate h in the following way,

A = USV T =⇒ h = V9

Since we know that all the tags are on the ground, we can consider Zw = 0 and obtain the following

equation. 
x

y

1

 = K


r11 r12 t1

r21 r22 t2

r31 r32 t3



xw

yw

1

 =⇒ R =


r11 r12 t1

r21 r22 t2

r31 r32 t3

 = K−1h3×3 (3)

Given,

K =


311.0520 0 201.8724

0 311.3885 113.6210

0 0 1


Now using the above obtained R matrix we calculate CRW and CTW in the following way,[

R1 R2 R1 ×R2

]
= USV T

CRW = U


1 0 0

0 1 0

0 0 det(UV T )

V T and CTW =
R3

‖R1‖

The pose of the MAV in the world frame is equivalent to WRB and WTB which can be obtained by,

WHB = WHC × CHB, WHC can be found by using CRW and CTW obtained above. From, given Camera-

Body calibration, CHB can be found as,

CHB =


0.707 −0.707 0 −0.04

−0.707 −0.707 0 0

0 0 −1 −0.03

0 0 0 1


After obtaining WRB and WTB, the required result is obtained by transforming WRB to euler angle format

in XY Z manner.

2



Results:

The above steps for pose estimation are performed for each time step and the pose data is plotted. This

data is compared with vicon data to check the validity.

Figure 1: Project Part-1, DataNum: 1

Figure 2: Project Part-1, DataNum: 4

3



Velocity Estimation (Part-2):

In this part we calculate the velocity of the MAV using the video feed of the on-board camera. This

is achieved by first calculating the optical flow using KLT image tracking technique. Later appropriate

calculations are made to calculate linear and angular velocity of the MAV w.r.t world in the world frame.

Firstly, we detect good points in a frame using corner detector functions in Matlab. Later we choose

strongest 50 of those points to reduce the iterations. In the next frame, point tracker techniques are used

to track the position of previously detected points in the current frame. The difference of these two sets

of points from two frames is calculated and divided by δt to calculate the optical flow,[
u

v

]
=

[
δx

δy

]
/δt

Now that we have the optical flow for every point of the image, we use the following equation to estimate

the required linear and angular velocities of camera.

[
u

v

]
=

[
−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z 1 + y2 −xy −x

]


Vx

Vy

Vz

ωx

ωy

ωz


(4)

Here (x, y) are point coordinates in the image frame. Z is the depth of that corresponding point in the

camera frame and (u, v) is the optical flow calculated above. The only unknown in the above equation in

Z which can be calculated by using results obtained from part1. We know, λi in the equation (1) is the

scaling factor which is equivalent to Zc i.e, the depth required,

=⇒ Zc = λi

We know H =
[
R1 R2 T

]
where R = CRW and T = CTW . These are obtained by transforming the pose

obtained from the part-1.

R = RT
c2w and T = CTB −RT

c2w × wTB

Now restructuring the above equation (1),

A = H−1


x

′
i

y
′
i

1

 =


xi/Z

yi/Z

1/Z


=⇒ Z = 1/A(3)

Now that we have calculated all the required variables in (4), we can calculate the 6 × 1 V vector which

can be calculated in two different ways.

4



Equation (4) can be represented as,

[
u

v

]
=

[
f1(x, y, Z)

f2(x, y, Z)

]


Vx

Vy

Vz

ωx

ωy

ωz


We obtain 50 sets of U and F vectors for 50 detected points. They are stacked up below each other to

from two 100× 1 vectors are both sides of equation. Now using the least-square principle we can estimate

the most optimal velocity vector.

=⇒

[
V

ω

]
= lsq(F100×1,

[
u

v

]
100×1

)

Least square solution is great but it will not give the best solution because it may include a few outliers.

In order to get rid of these outliers we use RANSAC technique. In can be observed from (4) that atleast

three points are required to find the velocity. So we perform three point based ransac to obtain inliers.

We know number of iterations k is,

k =
log(1− ρsuccess)
log(1− eM)

In our case we know M = 3. Considering the trends of data ρsuccess and e are taken as 0.95 and 0.5

respectively.

=⇒ k = 22

Now we run k iterations where in each iteration we select random three points and velocity vector is

calculated. Then this velocity is used to calculate

[
u

v

]
for every other point and the norm of the difference

between this and the optical flow obtained before is measured to differentiate outliers. cost

=

∥∥∥∥∥Fi

[
V

ω

]
− ṗi

∥∥∥∥∥
2

If cost< 0.001, then that point is considered as inlier. Later we consider the iteration with most number

of inliers. All the F matrices of these inliers are stacked up and the corresponding optical flow values are

stacked up in a vector U . The velocity is then calculated using the least squares method as above.

=⇒

[
V

ω

]
= lsq(F2∗inls×1, U2∗inls×1)

This will give more optimal result compared to a simple least square method because we have rejected all

the outliers.

5



The above obtained velocities are CṖC
W and CωC

W . In order to match them with the data given by vicon

we need to transform the above veclocities to W ṖB
W and BωB

W . This transformation is done using,[
BṖB

W

BωB
W

]
=

[
RC

B −RC
BS(rCCB)

0 RC
B

]
,W ṖB

W = RW
B

BṖB
W

Results:

The following plots are of results obtained before applying filter,

Figure 3: Project Part-2 before filter, DataNum: 1

Figure 4: Project Part-2 before filter, DataNum: 4

6



It has been observed that the results obtained contain a lot of noise so, a lowpass filter is applied to make

the signals smoother. In our case a moving average filter of degree 4 is applied.

The following plots are of results obtained after applying filter,

Figure 5: Project Part-2 after applying filter, DataNum: 1

Figure 6: Project Part-2 after applying filter, DataNum: 4

7



Conclusion:

From the results in part-1 it can be observed that position and orientation aligns almost perfectly with

the vicon data stating that this method of finding out pose is reliable and later when we use this data as

sensor measurement in kalman filter, we can keep the noise very low. The results obtained in part-2 are

more noisy and sometimes goes out of bounds. Though filtering helps to some extent it doesn’t completely

eliminate the problem. So we can use this data as measurement with a little high noise. One more thing

to note is that the computation time to calculate pose and velocity differs by huge factor and we’ll have

to accommodate this by setting the proper frequencies while capturing data.

8


